SOLUTIONS & ANSWERS FOR JEE MAINS-2013 VERSION – P

[PHYSICS, CHEMISTRY & MATHEMATICS]

PART – A – PHYSICS

1. A uniform cylinder of length L and mass M having cross-sectional area A is suspended, with _____

Ans:
$$\frac{Mg}{k} \left[1 - \frac{LA\sigma}{2M} \right]$$

Sol:
$$B = \frac{LA\sigma g}{2}$$
$$Mg = B + kx_0$$
$$\Rightarrow x_0 = \frac{Mg}{k} - \frac{B}{k}$$
$$= \frac{Mg}{k} \left[1 - \frac{LA\sigma}{2M} \right]$$

2. A metallic rod of length I is tied to a string of length 2I and made to rotate with angular speed ω ----

V₂

Ans:
$$\frac{5B\omega\ell^2}{2}$$

Sol:

O

$$v_{1} = 2\ell\omega; \quad v_{2} = 3\ell\omega$$

$$v_{Av} = \frac{v_{1} + v_{2}}{2} = \frac{5\ell\omega}{2}$$

$$E = B\ell v_{Av} = \frac{5B\omega\ell^{2}}{2}$$

2ℓ

- Statement 1
 A point particle of mass m moving with speed v collides with ---
 - Ans: Statement-I is false, statement II is true.

Sol:
$$\Delta KE = \frac{1}{2} \frac{mM}{(M+m)} (v-0)^2 (1-e^2)$$

 $e = 0 \text{ for } \Delta KE_{MAX}$
 $\Rightarrow \Delta KE = \frac{1}{2} m v^2 (\frac{M}{M+m})$
Not $\frac{1}{2} m v^2 (\frac{m}{M+m})$
Statement 1 is false.

4. Let $[\epsilon_0]$ denote the dimensional formula of the permittivity of vacuum----

Ans:
$$[\varepsilon_0] = [M^{-1}L^{-3}T^4A^2]$$

Sol:
$$E_0 = C^2 N^{-1} m^{-2}$$

= $(AT)^2 [MLT^{-2}]^{-1} L^{-2}$
= $M^{-1}L^{-3} T^4 A^2$

5. A projectile is given an initial velocity of $(\hat{i} + 2\hat{j})$ m/s, where \hat{i} is----

Ans:
$$y = 2x - 5x^2$$

Sol: $u \cos\theta = 1 \text{ m s}^{-1}$;
 $\tan\theta = \frac{2}{1} = 2$
 $y = x\tan\theta - \frac{1}{2}\frac{gx^2}{u^2\cos^2\theta}$
 $= 2x - \frac{1}{2} \times \frac{10x^2}{1^2}$
 $\Rightarrow y = 2x - 5x^2$

6. The amplitude of a damped oscillator decreases to 0.9 times its original magnitude ----

Ans: 0.729

Sol:
$$A = 0.9A_0 \times 0.9 \times 0.9$$

= 0.729A₀

7. Two capacitors C_1 and C_2 are charged to 120 V and 200 V respectively. It is found ----

Ans:
$$3C_1 = 5C_2$$

- A sonometer wire of length 1.5 m is made of steel. The tension in it produces an elastic strain of 1%. ----

Ans: 178.2 Hz
Sol:
$$f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} = \frac{1}{2L} \sqrt{\frac{\epsilon Y}{\rho}}$$

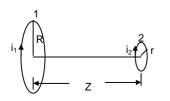
 $1 \sqrt{0.01 \times 2.2 \times 10^{11}}$

$$= \frac{1}{2 \times 1.5} \sqrt{\frac{0.01 \times 2.2 \times 10}{7.7 \times 10^3}}$$

= 178.2 Hz

9. A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm. The centre of the ----

Ans:
$$9.1 \times 10^{-11}$$
 weber



We have M_{12} = $M_{21}\,$ (R for large coil 1, r for small coil 2, Z = distance between them)

$$\frac{\mu_{0} \cdot i_{1}R^{2}}{2[R^{2} + Z^{2}]^{3/2}} \cdot \pi r^{2} = \phi_{2} = M_{21} i_{1}$$

$$\Rightarrow M_{21} = \frac{\pi \mu_{0}R^{2}r^{2}}{2(R^{2} + Z^{2})^{3/2}} = M_{12}$$

$$\phi_{1} = M_{12} i_{2} = M_{21} i_{2} (\because i_{2} = 2 A)$$

$$= \frac{\pi \mu_{0}R^{2}r^{2}}{2(R^{2} + Z^{2})^{3/2}} \times 2$$

$$= \frac{\pi \times 4\pi \times 10^{-7} \times (0.2)^{2} \times (0.003)^{2}}{[0.2^{2} + 0.15^{2}]^{3/2}}$$

$$= \frac{1.4212 \times 10^{-12}}{0.015625}$$

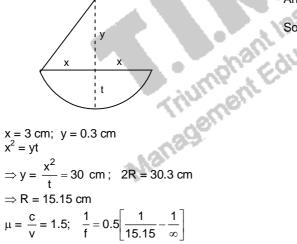
$$\approx 9.1 \times 10^{-11} \text{ Wb}$$

10. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If speed of light -

Ans: 30 cm

Sol:

Sol:



$$\mu = \frac{1}{v} = 1.6, \quad f = 0.6 \lfloor 15.15 \rfloor$$
$$= \frac{1}{2 \times 15.5} \Rightarrow f = 30.3 \text{ cm}$$
$$\cong 30 \text{ cm}$$

11. What is the minimum energy required to launch a satellite of mass m from the surface ----

Ans:
$$\frac{5\text{GmM}}{6\text{R}}$$

Sol:
$$-\frac{GMm}{R} + E = -\frac{GMm}{2(R+2R)}$$

 $\Rightarrow E = \frac{5GmM}{6R}$

12. A diode detector is used to detect an amplitude modulated wave of 60% modulation by using a condenser of ----

Sol:
$$\frac{1}{f} \ll RC = 2.5 \times 10^{-5}$$

 $\Rightarrow f \gg \frac{1}{RC} = 4 \times 10^4 \text{ Hz}$
Select the highest value of f from given choices!

13. A beam of unpolarised light of intensity I_{0} is passed through a Polaroid A and then through another Polaroid B ----

Ans:
$$\frac{I_0}{4}$$

Sol: $I_E = \frac{I_0}{2} \times \cos^2 45^\circ$
 $= \frac{I_0}{2} \times \frac{1}{2} = \frac{I_0}{4}$

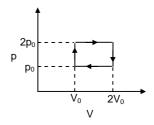
Sol

15.

14. The supply voltage to a room is 120 V. The resistance of the lead wires is 6 $\Omega.$ A 60 W bulb is already ----

Ans: 10.04 volt
Sol:
$$\mathbf{r} = 6 \Omega$$

 $R_1 = \frac{V^2}{P_1} = \frac{120 \times 120}{60} = 240 \Omega$
 $V_1 = \frac{VR_1}{(R_1 + r)} = \frac{120 \times 240}{246} = 117.07 V$
 $R_2 = \frac{V^2}{P_2} = \frac{120 \times 120}{240} = 60 \Omega$
 $R_P = \frac{R_1R_2}{(R_1 + R_2)} = \frac{240 \times 60}{300} = 48 \Omega;$
 $V_2 = \frac{48 \times 120}{(48 + 6)} = 106.67 V$
 $\therefore \Delta V = 117.07 - 106.67$
 $= 10.4 V$ (Nearest answer is 10.04 volt)



The above pV diagram represents the thermodynamic cycle of an engine -----

Ans:
$$\left(\frac{13}{2}\right)p_0V_0$$

Sol:
$$H = Q_1 + Q_2 Q_1 = isochoric = nC_V(T_2 - T_1) = \frac{C_V(p_2V_2 - p_1V_1)}{R} = \frac{3}{2}R.\frac{(2p_0V_0 - p_0V_0)}{R} = \frac{3}{2}p_0V_0 Q_2 = isobaric = nC_p(T_3 - T_2) = \frac{C_p(p_3V_3 - p_2V_2)}{R} = \frac{5}{2}R.\frac{(4p_0V_0 - 2p_0V_0)}{R} = 5p_0V_0 \therefore H = \frac{3}{2}p_0V_0 + 5p_0V_0 = (\frac{13}{2})p_0V_0$$

16. A hoop of radius r and mass m rotating with an angular velocity ω_0 is placed on a rough horizontal surface ----

Ans: $\frac{r\omega_0}{2}$

Sol:

$$\begin{array}{l} \mathsf{L}_1 = \mathsf{L}_2; \\ \mathsf{L}_1 = \mathsf{L}_{\mathsf{CM}} + \mathsf{mv}_{\mathsf{CM}}\mathsf{r} = \mathsf{L}_{\mathsf{CM}} = \mathsf{mr}^2 \omega_0 \\ \mathsf{L}_2 = \mathsf{L}_{\mathsf{CM}} + \mathsf{mv}_{\mathsf{CM}}\mathsf{r} = \mathsf{mr}^2 \omega + \mathsf{mr}^2 \omega = 2\mathsf{mr}^2 \omega \end{array}$$

2

VCM

 $2mr^{2}\omega = mr^{2}\omega_{0} \qquad \omega$ $\Rightarrow v_{CM} = r\omega = \frac{r\omega_{0}}{2}$

17. An ideal gas enclosed in a vertical cylindrical container supports a freely moving piston of mass M. The piston and the cylinder have equal ----

Ans:
$$\frac{1}{2\pi}\sqrt{\frac{A^2\gamma p_0}{MV_0}}$$

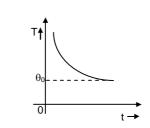
Sol:

_____ μ_Δx

$$\Delta V = A \Delta x \quad ; \ \frac{\Delta V}{V_0} = \frac{A \Delta x}{V_0}$$

$$\Delta p = -B \frac{\Delta V}{V_0} = -\frac{BA\Delta x}{V_0}$$
$$\Delta F = \Delta pA = -\frac{BA^2\Delta x}{V_0} = -\frac{\gamma p_0 A^2}{MV_0} \Delta x$$
$$(\because B = \gamma p_0 \text{ for adiabatic process})$$
$$\therefore a = \frac{\Delta F}{M} = -\frac{\gamma p_0 A^2}{MV_0} \Delta x \Rightarrow SHM$$
$$\Rightarrow \omega^2 = \frac{\gamma p_0 A^2}{MV_0} \Rightarrow f = \frac{1}{2\pi} \sqrt{\frac{A^2 \gamma p_0}{MV_0}}$$

18. If a piece of metal is heated to temperature θ and then allowed to cool in a room which is at temperature ----



Ans:

- Sol: Temperature time graph for Newton's law of cooling.
- Statement 1 Higher the range, greater is the resistance of ammeter ----
 - Ans: Statement I is false, Statement II is true.
 - Sol: Higher the range of an ammeter, less is its resistance.

 \Rightarrow Statement-I is false.

20. In an LCR circuit as shown below both switches are open initially. Now switch S_1 is closed, S_2 kept open. ----

Ans: At
$$t = 2\tau$$
, $q = CV[1 - e^{-2}]$

Sol:
$$q = Q_0 \left[1 - e^{-\frac{t}{\tau}} \right]$$

= $CV \left[1 - e^{-\frac{t}{\tau}} \right]$
when $t = 2\tau$, $q = CV[1 - e^{-2}]$

- 21. Two coherent point sources S_1 and S_2 are separated by a small distance d as shown ----
 - Ans: Concentric circles
 - Sol: Wavefront of each source is spherical. When two spheres interfere, locus is circular ⇒ concentric circles.

22. The magnetic field in a travelling electromagnetic wave has a peak value of ----

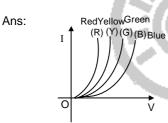
Ans: 6 V / m

Sol:
$$E_0 = B_0 c$$

= 20 × 10⁻⁹ × 3 × 10⁸
= 60 × 10⁻¹ V m⁻¹
= 6 V m⁻¹

 23. The anode voltage of a photocell is kept fixed. The wavelength λ of the light falling on the cathode----Ans: ____ ▲

- Sol: At λ_{max} , i becomes zero. For smaller λ , i $\neq 0$ Only option (4) fulfills.
- 24. The I-V characteristic of an LED is --



- Sol: LED is PN junction diode in forward bias. \Rightarrow option (1) is correct.
- 25. Assume that a drop of liquid evaporates by decrease in its surface energy, so that its temperature remains unchanged. What should ---
 - Ans: $\frac{2T}{\rho L}$

Sol:
$$E = 4\pi r^2 T$$

 $\frac{dE}{dr} = 8\pi r T$ ---(i)
 $\left(\frac{dm}{dr}\right)L = L\frac{d}{dr}\left(\frac{4}{3}\pi r^3\rho\right)$
 $= 4\pi r^2\rho L$ ---(ii)
(i) = (ii)
 $8\pi r T = 4\pi r^2\rho L \Rightarrow r = \frac{2T}{\rho L}$

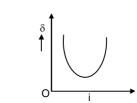
26. In a hydrogen like atom electron makes transition from an energy level with quantum number n to another with ----

Ans:
$$\frac{1}{n^3}$$

Sol:
$$\Delta E = 13.6Z^2 \left[\frac{1}{(n-1)^2} - \frac{1}{n^2} \right] = h\upsilon$$

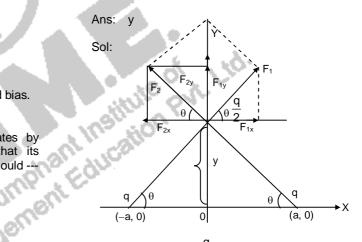
 $\Rightarrow \upsilon \propto \frac{1}{n^3}$

27. The graph between angle of deviation (δ) and angle of incidence (i) ----



Ans:

- Sol: As i increases, δ decreases, reaches a minimum value and then increases. \Rightarrow option (3)
- 28. Two charges, each equal to q, are kept at x = -aand x = a on the x-axis. A particle of mass m and charge ----



The charge $\frac{q}{2}$ experiences a repulsive force due to each charge on the X-axis.

i.e. F_1 and F_2

$$F_1 = F_2 = \frac{kq^2}{2r^2} = \frac{q^2}{8\pi\epsilon_0(a^2 + y^2)}$$

The x-components F_{1x} and F_{2x} cancel each other. The y-components F_{1y} and F_{2y} add together.

Net force
$$F\left(\text{ on } \frac{q}{2} \right) = 2F_{1y} = 2F_1 \sin \theta$$

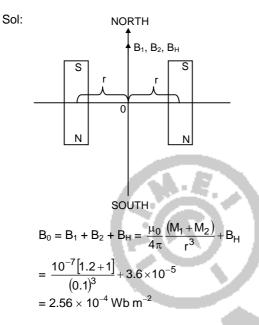
= $\frac{2q^2}{8\pi\epsilon_0 (a^2 + y^2)} \cdot \frac{y}{(a^2 + y^2)^{1/2}}$
 $\left(\because \sin \theta = \frac{y}{(a^2 + y^2)^{1/2}} \right)$

$$= \frac{q^2 y}{4\pi\epsilon_0 (a^2 + y^2)^{3/2}}$$

If y << a, F = $\frac{q^2 y}{4\pi\epsilon_0 a^3} \Rightarrow$ F \propto y

29. Two short bar magnets of length 1 cm each have magnetic moments 1.20 A m^2 and 1.00 A m^2 respectively. They are placed on a horizontal ----

Ans: 2.56×10^{-4} Wb/m²



30. A charge Q is uniformly distributed over a long rod AB of length L as shown in the figure. The electric potential ----

Qℓn2 Ans: 4πε₀L

Sol:

PART B - CHEMISTRY

31. Which of the following complex species is not expected ----

Ans: [Co(NH₃)₃Cl₃]

Complex of the type Ma₃b₃ Sol:

32. Which one of the following molecules is expected to exhibit ----

Ans: C₂ and N₂

- C2 and N2 are diamagnetic in nature Sol:
- 33. A solution of (-)-1-chloro-1-phenylethane in toluene racemises ----

Ans: Carbocation

Sol:

H

$$C_6H_5 - C - CH_3$$

CI
1-chloro-1-phe nyle thane

惫

It can form a stable secondary benzylic carbocation

34. Given

$$E^{\circ}_{Cr^{3+}/Cr} = 0.74V; E^{\circ}_{MnO^{-}_{4}/Mn^{2+}} = 1.51 V - ---$$

Ans: MnO_4^-

- Sol: Among the given, highest E° value is possessed by MnO_4^- . Higher the reduction potential the better the oxidising agent
- 35. A piston filled with 0.04 mol of an ideal gas expands ----

Ans: q = +208 J, w = -208 J

Sol:

w =
$$-nRT \ln \frac{V_2}{V_1}$$

= $-0.04 \times 8.314 \times 310 \times \ln 7.5$
= $-208 J$

36. The molarity of a solution obtained by mixing ----

Ans: 0.875 M

Sol:
$$M = \frac{750 \times 0.5 + 250 \times 2}{1000} = 0.875 \text{ M}$$

37. Arrange the following compounds in order of decreasing acidity :----

Ans: III > I > II > IV

- Sol: Presence of electron withdrawing group increases the acid strength of phenol. Since -NO₂ group is more electron withdrawing than Cl, p-nitrophenol is the strongest acid among the given compounds
- 38. For gaseous state, if most probable speed is denoted by C*, average speed ----

Ans:
$$C^*$$
: \overline{C} : $C = 1$: 1.128: 1.225
Sol: C^* : \overline{C} : $C = \sqrt{2}$: $\sqrt{\frac{8}{\pi}}$: $\sqrt{3}$

39. The rate of a reaction doubles when its temperature ----

= 1 : 1.128 : 1.225

Ans: 53.6 kJ mol⁻¹

Sol:
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

 $E_a = \frac{\log 2 \times 2.303 \times 8.314 \times 300 \times 310}{10}$
 $= 53.59 \text{ kJ mol}^{-1}$

40. A compound with molecular mass 180 is acylated with CH₃COCI ----

Ans: 5

- Sol: Increase in molecular mass due to acylation = 390 – 180 = 210. This corresponds to the introduction of 5 acetyl groups. So the number of amino groups present is 5.
- 41. Which of the following arrangements does no represent ----
 - Ans: $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour
 - Sol: No. of unpaired electrons in Mn^{2+} is 5 and Fe^{2+} is 4
- 42. The order of stability of the following carbocations :----
 - Ans: III > I > II
 - Sol: Benzyl carbocation (III) is more resonance stabilized than allyl carbocation (I).

Primary carbocation (II) is the least stable ion

43. Consider the following reaction : ----

Sol: The balanced equation is

$$2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} + 16H^{+} \longrightarrow$$

$$2Mn^{2+} + 10CO_{2} + \frac{16}{2}H_{2}O$$

$$x = 2, y = 5, z = 16$$

- 44. Which of the following is the wrong statement?---
 - Ans: No answer
 - Sol: All the given four statements are correct
- 45. A gaseous hydrocarbon gives upon combustion 0.72 g.----

Ans: C₇H₈

Sol: Ratio of C and H atoms = No. of moles $CO_2 : 2 \times No.$ of moles of water = $\frac{3.08}{44} : \frac{2 \times 0.72}{18}$ = 7 : 8

$$\therefore$$
 Empirical formula = C₇H₈

46. In which of the following pairs of molecules/ions, both----

Ans:
$$H_2^{2+}$$
, He_2

Sol:
$$H_2^{Z^+} - \sigma 1s^{\circ}$$

 $He_2 - \sigma 1s^2 \sigma^* 1s^2$

- 47. Which of the following exists as covalent crystals----
 - Ans: Silicon
 - Sol: Silicon is a covalent crystal
- 48. Synthesis of each molecule of glucose in ----

Ans: 18 molecules of ATP

- Sol: 18 molecules of ATP
- 49. The coagulating power of electrolytes having ----

Ans: $Na^+ < Ba^{2+} < Al^{3+}$

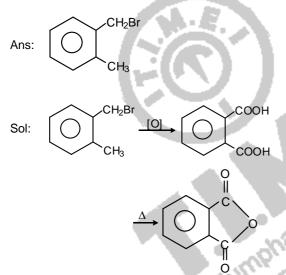
Sol: Higher the charge associated with the ion, the coagulating power increases.

- 50. Which of the following represents the correct order of ----
 - Ans: Ba < Ca < Se < S < Ar
 - Sol: The ionisation enthalpy in kJ mol⁻¹ of Ar - 1520S - 1000Se - 941Ca - 590Ba - 502
- 51. Energy of an electron is given by E = $-2.178 \times^{-18}$ J ----
 - Ans: 1.214×10^{-7} m

Sol:
$$\lambda = \frac{hc}{\Delta E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8 \times 4}{2.178 \times 10^{-18} \times 3}$$

= 1.214 × 10⁻⁷ m

52. Compound (A), C₈H₉Br, gives a white precipitate when warmed with ----



- 53. For successive members of the first row transition elements ----
 - Ans: Co(Z = 27)
 - Sol: Highest $\mathsf{E}^{^{\mathrm{o}}}_{\mathsf{M}^{3^{+}}/\mathsf{M}^{2^{+}}}$ is possessed by cobalt
- 54. How many litres of water must be added to 1 litre ----
 - Ans: 9.0 L
 - Sol: $\begin{array}{c} pH = 1 \rightarrow [H^+] = 0.1 \\ pH = 2 \rightarrow [H^+] = 0.01 \end{array}$ 10 times dilution 1 L HCl + 9 L water

55. The first ionisation potential of Na is 5.1 eV----

Ans: -5.1 eV

Sol: $Na \rightarrow Na^+ + e^-$ 5.1 eV $Na^+ + e^- \rightarrow Na$ $\Delta_{eg}H= -5.1$ eV

56. An organic compound A upon reacting with $\ensuremath{\text{NH}}_3$ gives B.----

57. Stability of the species Li_2 , Li_2^- and Li_2^+ ----

Ans:
$$Li_2^- < Li_2^+ < Li_2$$

Sol: $Li_2 : \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^0$ B.O = 1
 $Li_2^+ : B.O = \frac{1}{2}$
 $Li_2^- : B.O = \frac{1}{2}$

In Li_2^- there is an e^- in antibonding M.O and hence it is less stable than Li_2^+ :

- 58. An unknown alcohols is treated with the "Lucas reagent"----
 - Ans: tertiary alcohol by S_N1
 - Sol: Tertiary alcohols react most rapidly with Lucas reagent
- 59. The gas leaked from a storage tank of the ----
 - Ans: Methylisocynate
 - Sol: Methylisocynate
- 60. Experimentally it was found that a metal oxide has formula $M_{0.98} O.{\mathcharmon}$

Ans: 4.08%

Sol: Let x be M^{2+} ions 2x + (98 - x) 3 = 200∴ x = 94 ∴ M^{3+} ions = 4 Ratio = $\frac{4}{98} = 4.08\%$

PART C – MATHEMATICS

61. Distance between two parallel planes 2x + y + 2z = 8 ----

Sol: Distance =
$$\frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

= $\frac{\left|-8 - \frac{5}{2}\right|}{\sqrt{4 + 1 + 4}} = \frac{21}{2 \times 3} = \frac{7}{2}$

62. At present, a firm is manufacturing 2000 items. It is ----

Sol:
$$x = 0, p_0 = 2000$$

 $dp = 100 - 12\sqrt{x}$
 $\Rightarrow p = 100x - 8x^{\frac{3}{2}} + p_0$
 $\therefore p = 100x - 8x^{\frac{3}{2}} + 2000$
At $x = 25, p = 3500$

- 63. Let A and B two sets containing 2 elements and 4 elements respectively----
 - Ans: 219
 - Total number of subsets = 2^8 Sol:

Subset containing less than three elements = ${}^{8}C_{0} + {}^{8}C_{1} + {}^{8}C_{2}$ = 1 + 8 + 28 = 37 $\therefore + 28 = 37$ $\therefore \text{ Required no. of subsets} = 256 - 37$ = 219Management

64. If the lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$

Ans: exactly two values

 $\begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & -k \\ 0 & 0 & 0 \end{vmatrix} = 0$ Sol:

$$1(1+2k) + (1+k^{2}) - (2 - k) = 0$$

$$1 + 2k + 1 + k^{2} - 2 + k = 0$$

$$k^{2} + 3k = 0$$

$$k (k + 3) = 0$$

$$k = 0, -3$$

exactly two values

65. If the vectors
$$AB = 3\hat{i} + 4\hat{k}$$

Ans:
$$\sqrt{33}$$

Sol:
C $(2,-2,4)$
C $(2,-2,4)$
A $(0, 0, 0)$
B $(3 0, 4)$
C $(2,-2,4)$
B $(3 0, 4)$
C $(2,-2,4)$
C $(2,-2,4)$
C $(2,-2,4)$
C $(2,-2,4)$
C $(2,-2,4)$
C $(2,-2,4)$
C $(3 0, 4)$
C $(3 0,$

- 66. The real number k for which the equation, ----
 - Ans: does not exist
 - $f(x) = 2x^3 + 3x + k = 0$ Sol: $f'(x) = 6x^2 + 3 > 0$ for all real x ∴ f(x) is monotonic increasing No value of k exists

 $\frac{7}{179+10^{-20}}$

67. The sum of first 20 terms of the sequence 0.7, 0.77----

81¹
Sol:
$$\frac{9}{7}S = .9+.99+....$$

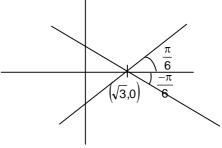
 $= 1 - 1 + 1 - .01 +$
 $= 20 - .1+.1^2 + .1^3_{+....+1^{20}}$
 $= 20 - \frac{.1(1 - .1^{20})}{1 - .1} = 20 - \frac{1}{9}(1 - .1^{20})$
 $S = \frac{7}{9} \left[20 - \frac{1}{9}(1 - 10^{-20}) \right]$
 $= \frac{7}{81} \left[179 + 10^{-20} \right]$

68. A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected---

Ans:
$$\sqrt{3}y = x - \sqrt{3}$$

Sol:

Ans:



$$\sqrt{3}y = \sqrt{3} \Rightarrow \theta = \frac{-\pi}{6} \text{ at } (\sqrt{3}, 0)$$

$$\therefore \text{ the required ray make angle } \frac{\pi}{6} \text{ with } x$$

axis at $(\sqrt{3}, 0)$

$$\therefore \text{ The equation is}$$

$$y = \frac{1}{\sqrt{3}} (x - \sqrt{3}) \Rightarrow \sqrt{3}y = x - \sqrt{3}$$

69. The number of values of k, for which the system of equations----

Ans: 1

Sol: Since system has no solution, the lines are parallel $\therefore \frac{k+1}{k} = \frac{8}{k+3} \neq \frac{4k}{3k-1}$ $\frac{k+1}{k} = \frac{8}{k} \Rightarrow k = 1 \text{ or } 3$

k k+3 → k + 1 of 0
When k = 1

$$\frac{8}{k+3} = \frac{4k}{3k-1} \Rightarrow k \in \mathbb{R}$$

∴ There is only two value of k = 3 is
feasible

70. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$ ----

Ans: 1: 2: 3

- Sol: Since $x^2 + 2x+3 = 0$ has non real roots and its is given that one root is common, implies that both roots of equations are common, Hence coefficients are proportional \therefore a: b: c = 1: 2: 3
- 71. The circle passing through (1, -2) and touching the axis----
 - Ans: (5, -2)
 - Sol: Since circle touches x axis at (3, 0) the center is $(3, \alpha)$ $\therefore (x -3)^2 + (y - \alpha)^2 = \alpha^2$, it passes through $(1,-2) \Rightarrow \alpha = -2$ \therefore The equation of circle is $(x -3)^2$ $+ (y +2)^2 = 4$ that circle passes through (5, -2)
- 72. If x, y, z are in A. P and $\tan^{-1}x$, $\tan^{-1}y$ ----

Ans:
$$x = y = z$$

Sol: Given that $2xy = x + z$ and $2\tan^{-1}y$
 $= \tan^{-1}x + \tan^{-1}z$
 $\Rightarrow \tan^{-1}\left(\frac{2y}{1-y^2}\right) = \tan^{-1}\left(\frac{x+z}{1+xz}\right)$
 $\Rightarrow \frac{2y}{1-y^2} = \frac{x+z}{1-xz}$

$$\frac{2y}{1-y^2} = \frac{2y}{1-xz}$$

$$\Rightarrow xz = y^2 \Rightarrow x, y, z \text{ are in GP}$$

Hence, $x = y = z$

- 73. Consider: statement I:----
 - Ans: Statement -I is true; statement II is true; Statement - II is a correct explanation for statement I.
 - Sol: $P \lambda \sim q \wedge \sim P \wedge q \Leftrightarrow (p \wedge \sim p) \wedge (q \wedge \sim q)$ $\Leftrightarrow F \wedge F \Leftrightarrow F$ \therefore It is a following statement I is true Since $\sim q \rightarrow \sim p$ is contra positive of $p \rightarrow q \therefore p \rightarrow q \Leftrightarrow (\sim q - \sim p)$ is a tautology, and statement is true. Both statements I and II are true but II does not simply I

74. If
$$\int f(x) dx = \psi(x)$$
, then ----

Ans:
$$\frac{1}{3}x^{3}\psi(x^{3}) - \int \chi^{2}\psi(x^{3})dx + c$$

Sol:
$$\int x^{5}f(x^{3})dx = \int x^{3} \cdot x^{2}f(x^{3})dx \setminus a$$
$$= \frac{1}{3}\int t f(t)dt$$
$$= \frac{1}{3}t\int f(t)dt - \frac{1}{3}\int 1\int f(t)dt$$
$$= \frac{1}{3}t\psi(t) - \frac{1}{3}\int \psi(t)dt$$
$$= \frac{1}{3}x^{3}\psi(x^{3}) - \int x^{2}\psi(x^{3})dx + c$$

5.
$$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$
 is equal to:---

Ans: 2

Sol:

$$\frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x}$$

$$= \frac{2 \sin^2 x}{x \tan 4x} [3 + \cos x]$$

$$= 2 (3 + \cos x) \frac{\left(\frac{\sin x}{x}x\right)^2}{\left(\frac{\tan 4x}{4x}\right)} \times 4$$
limit = $\frac{2 \times 4}{4} = 2$

- 76. Statement I: The value of the integral----
 - Ans: Statement I is false; statement II is true.

Sol:

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}}$$

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos(\frac{\pi}{2} - x)}}{\sqrt{\sin(\frac{\pi}{2} - x)} + \sqrt{\cos(\frac{\pi}{2} - x)}} dx$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \int f(x) dx$$

$$= \int_{a}^{b} f(a + b - x) dx$$
Adding, $2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} dx = \frac{\pi}{3} - \frac{\pi}{6}$

$$= \frac{\pi}{6}$$

$$I = \frac{\pi}{12}$$

77. The equation of the circle passing through the foci of the ellipse----

0

Ans:
$$x^2 + y^2 - 6y - 7$$

Sol:

$$a^{2} = 16; b^{2} = 9$$

 $9 = 16 (1 - e^{2})$
 $16e^{2} = 7$
 $e = \frac{\sqrt{7}}{4}$
Foci are at $(-\sqrt{7}, 0)(\sqrt{7}, 0)$
Centre at $(0, 3)$
Radius = $\sqrt{(\sqrt{7})^{2} + 9} = 4$
Equation of the circle is
 $(x - 0)^{2} + (y - 3)^{2} = 16$
 $x^{2} + y^{2} - 6y - 7 = 0$

78. A multiple choice examination has 5 questions.---

Ans:
$$\frac{11}{3^5}$$

Sol: 5 questions and 3 choices. \therefore Probability of correct choice by guessing = $\frac{1}{3}$

Probability of getting exactly four correct answers

$$= {}^{5}C_{4} \times \left(\frac{1}{3}\right)^{4} \times \frac{2}{3}$$

Probability of getting all correct answers

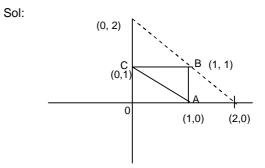
$$=\left(\frac{1}{3}\right)^5$$

Required answer =
$$\left(5 \times \frac{2}{3^5}\right) + \frac{1}{3^5}$$

= $\frac{10}{3^5} + \frac{1}{3^5} = \frac{11}{3^5}$

79. The x- coordinate of the incentre of the triangle that has the coordinates of mid points of its----

Ans:
$$2-\sqrt{2}$$



Lengths of the sides are 2,
$$2\sqrt{2}$$
, 2 x coordinate of the in centre

$$= \frac{2 \times 0 + 2\sqrt{2} \times 0 + 2 \times 2}{4 + 2\sqrt{2}}$$
$$= \frac{2}{2 + \sqrt{2}}$$
$$= \frac{2(2 - \sqrt{2})}{2}$$

80. The term independent of x in expansion of ----

2√2

Expression

$$= \frac{(x+1)\left(x^{\frac{1}{3}}+1\right)}{(x+1)} - \frac{(x-1)\left(x+x^{\frac{1}{2}}\right)}{x^{2}-x}$$

$$= \left(x^{\frac{1}{3}}-\frac{1}{x^{\frac{1}{2}}}\right)^{10}$$

$$T_{r+1} = {}^{10}C_{r}\left(x^{\frac{1}{3}}\right)^{10-r}\left(\frac{1}{x^{\frac{1}{2}}}\right)^{r}(-1)^{r}$$

$${}^{10}C_{r}\left(x^{\frac{10}{3}}-\frac{r}{3}\right)\left(\frac{1}{x^{\frac{1}{2}}}\right)^{r}(-1)^{r}$$

$${}^{(-1)^{r}}\frac{1^{0}C_{r}}{2^{r}} \times x^{\frac{10}{3}} - \frac{5r}{6}$$

$${}^{10}-\frac{5r}{2}=0 \implies r=4$$

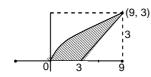
3 6 term independent of x

$$(-1)^4 \quad {}^{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{24x}$$

= 10 × 3 × 7
= 210

- 81. The area (in square units) bounded by the curves $y = \sqrt{x}$, ----
 - Ans: 9

Sol:



- x 3 = 2y ($x \ge 3$) Substituting for $y \Rightarrow$ $(x-3)^2 = 4x$ $x^2 - 10x + 9 = 0$ ∴ x = 9 When x = 9, y = 3After integrating, the required area = 18 – 9 = 9.
- 82. Let T_n be the number of all possible triangles formed by ----Ans: 5
 - Sol:

$$\frac{n+1}{6}C_{3} - C_{3} = 10$$

$$\frac{(n+1)(n)(n-1)}{6} - \frac{n(n-1)(n-2)}{6} = 10$$

$$\frac{n(n-1)}{6} - \{n+1 - (n-2)\} = 10$$

$$\frac{n(n-1)(3)}{6} = 10$$

$$n (n-1) = 20$$

$$n = 5$$

83. If z is a complex number of units modulus and argument θ , then arg----

Ans: θ

Sol: Let $z = \cos\theta + i\sin\theta$

$$\theta$$
Let $z = \cos\theta + i\sin\theta$

$$\frac{1+z}{1+\overline{z}} = \frac{1+\cos\theta + i\sin\theta}{1+\cos\theta - i\sin\theta}$$

$$= \frac{2\cos^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} - 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$$

$$= \frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}}$$
arg $\left(\frac{1+z}{1+\overline{z}}\right) = \frac{\theta}{2} - \left(\frac{-\theta}{2}\right) = \theta$

84. ABCD is a trapezium such that AB and CD are parallel----

Ans:
$$\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta}$$

Sol:

$$\frac{AB}{\sin \theta} = \frac{BD}{\sin(180^\circ - (\theta + \alpha))} BD^2 = p^2 + q^2$$
$$= \frac{BD}{\sin(\theta + \alpha)} =$$
$$= \frac{BD}{\sin \theta \cos \alpha + \cos \theta \sin \alpha}$$

$$\frac{BD}{\left(\sin\theta\right)\left(\frac{q}{BD}\right) + \left(\cos\theta\right)\left(\frac{p}{BD}\right)}$$
$$= \frac{BD^{2}}{2\pi}\sin\theta$$

$$p \cos \theta + q \sin \theta$$
$$= \frac{\left(p^2 + q^2\right)}{p \cos \theta + q \sin \theta}$$
$$AB = \frac{\left(p^2 + q^2\right) \sin \theta}{p \cos \theta + q \sin \theta}$$

85. If P =
$$\begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3 × 3----

Ans: 11

Sol:
$$|\operatorname{AdjA}| = |\operatorname{A}|^2$$

 $1\begin{vmatrix} 3 & 3\\ 4 & 4\end{vmatrix} - \alpha \begin{vmatrix} 1 & 3\\ 2 & 4\end{vmatrix} + 3\begin{vmatrix} 1 & 3\\ 2 & 4\end{vmatrix} = 16$
 $2\alpha - 6 = 16 \Longrightarrow \alpha = 11$

86. The intercepts on x- axis made by tangents to the curve, y = ----

Ans:
$$\pm 1$$

Sol: $y = \int_0^x |t| dt$, $x \in R$
 $x \in (-\infty, 0)$
 $\int_0^x - t dt$
 $= \left(\frac{-t^2}{2}\right)_0^x = \frac{-x^2}{2}$
 $x \in (-\infty, 0)$
 $y = \int_0^x t dt = \frac{x^2}{2}$

Therefore, f(x) =
$$\begin{cases} -\frac{x^2}{2}, & -\infty < x < 0\\ \frac{x^2}{2}, & 0 \le x < \infty \end{cases}$$

f'(x) =
$$\begin{cases} -x, & -\infty < x < 0\\ x, & 0 \le x < \infty \end{cases}$$

$$y = \frac{x^2}{2}$$

y' = x
Points are (2, 2) and (-2, -2)
Tangents are y - 2 = 2 (x - 2)
y + 2 = 2 (x + 2)
y = 2x - 2, y = 2x + 2
\times intercept $\rightarrow x = \pm 1$

87. Given: A circle, $2x^2 + 2y^2 = 5$ and a parabola, ----

Ans: Statement I is true; Statement II is true; Statement II is not a correct explanation for Statement I

Sol:

$$x^{2} + y^{2} = \frac{5}{2} \longrightarrow (1)$$

$$y^{2} = 4\sqrt{5}x \longrightarrow (2)$$

$$y = mx + \frac{\sqrt{5}}{m} \text{ is a tangent to (2)}$$

If the above line is to be tangent to (1)

$$\frac{5}{m^{2}} = \frac{5}{2}(1 + m^{2})$$

$$\frac{1}{m^{2}} = \frac{1}{2}(1 + m^{2})$$

$$2 = m^{2} + m^{4}$$

$$m^{4} + m^{2} - 2 = 0$$

$$\therefore m^{2} = 1, \text{ which satisfies } m^{4} - 3m^{2} + 2 = 0$$

 \therefore m² = 1, which satisfies m⁴ – 3m² + 2 = 0 Statement I is true, Statement II is true but Statement II is not a correct explanation for Statement I.

88. If $y = \sec(\tan^{-1}x)$, then ----

Ans:
$$\frac{1}{\sqrt{2}}$$

Sol:
$$y = \sec(\tan^{-1}x)$$
$$= \sec \sec^{-1} \sqrt{x^{2} + 1}$$
$$= \sqrt{x^{2} + 1}$$
$$\therefore \frac{dy}{dx} = \frac{1}{2\sqrt{x^{2} + 1}} = \frac{x}{\sqrt{x^{2} + 1}}$$
$$\left(\frac{dy}{dx}\right)_{x=1} = \frac{1}{\sqrt{2}}$$

89. The expression ----

Ans: secA + cosecA+1

Sol:
$$\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} =$$

 $\frac{\sin^2 A}{\cos A(\cos A - \sin A)} + \frac{\cos^2 A}{\sin A(\sin A - \cos A)}$ $= \frac{\cos^3 A - \sin^3 A}{\sin A \cos A(\cos A - \sin A)}$ Simplifying \Rightarrow secA + cosecA+1

- 90. All the students of a class performed poorly in mathematics.----
 - Ans: Variance
 - Sol: Variance is unaffected by linear change of sampling