KEY AND SOLUTION FOR NEET -2017 Solutions for Version -P

NOTE:

The terms "Easy (E)", "Medium: (M)", and "Difficult: (D)" are based on the following points

EASY (E):-

Easy Questions are defined as those questions that can be answered by a student who knows the concept under question. It is a direct application of the concept. A student is expected to have attempted all the EASY Category Questions.

MEDIUM (M):-

Medium Difficulty Questions are those questions that may involve more than one concept. A well-prepared student should be able to identify at least 75% of these and solve them correctly.

DIFFICULT (D):-

Difficult Questions are those questions which definitely involve multiple concepts and are tricky. The students may be led to think away from the ideal method of problem solving. It will require good effort even from the well prepared student to identify the Difficult ones and categorize them accordingly.

		KE	Y FOR	NEET 2017	7		
Code P	KEY	Code Q	KEY	Code R	KEY	Code S	KEY
1	3	1	4	1 4	4	1	1
2	4	2	4	2	3	2	3
3	4	3	1	3	3	3	ر کی
4	NA	4	2	4	4	4	4
5	4	5	2	5		-5	2
6	2	6	2	6	4	6	4
7	3	7	2	7	1000	7	3
8	2	8	2	8	3	8	4
9	2	9	2	9	2	9	2
10	4	10	2	10	3	10	2
11	1	11	2	11	2	11	1
12	3	12	2	12	1	12	4
13	4	13	1	13	2	13	4
14	4	14	2	14	4	14	1
15	2	15	1	15	3	15	1
16	2	16	3	16	1	16	4
17	2	17	1	17	4	17	4
18	3	18	4	18	2	18	4
19	3	19	4	19	4	19	2
20	4	20	1	20	1	20	2
21	4	21	2	21	2	21	3
22	1	22	3	22	4	22	2
23	2	23	4	23	1	23	2

24	2	24	2	24	4	24	1
25	3	25	3	25	4	25	3
26	2	26	4	26	3	26	3
27	2	27	1	27	3	27	2
28	2	28	2	28	3	28	4
29	3	29	4	29	4	29	3
30	1	30	1	30	1	30	4
31	1	31	4	31	3	31	2
32	4	32	2	32	NA	32	3
33	1 & 4	33	3	33	2	33	1
34	1	34	1	34	1	34	4
35	3	35	4	35	4	35	4
36	4	36	3	36	2	36	2
37	4	37	4	37	2 & 3	37	3
38	2	38	3	38	1	38	3
39	4	39	4	39	2	39	1
40	4	40	2	40	3	40	1
41	4	41	=1	41	4	41	4
42	2	42	3	42	4	42	4
43	2	43	2	43	3	43	1
44	3	44	2	44	4	44	2
45	2	45	2	45	3	45	<u>2</u>
46	3	46	4	46	4	46	3 ² 1
47	1	47	3	47	4	47	1
48	2	48	1	48	3	48	2
49	3	49	3	49	4	49	4
50	3	50	4	50	W.	50	1
51	2	51	1	51	4	51	3
52	1	52	3	52	3	52	3
53	4	53	3	53	3	53	4
54	4	54	1	54	3	54	1
55	1	55	4	55	4	55	1
56	1	56	1	56	3	56	1
57	2	57	4	57	3	57	1
58	3	58	1	58	1	58	4
59	3	59	2	59	2	59	2
60	3	60	1	60	1	60	4
61	1	61	2	61	3	61	3
62	1	62	1	62	1	62	1
63	3	63	2	63	2	63	3
64	3	64	4	64	4	64	1
65	3	65	2	65	11	65	1

66	1	66	3	66	4	66	1
67	2	67	1	67	1	67	1
68	4	68	2	68	4	68	2
69	3	69	2	69	2	69	1
70	4	70	3	70	1	70	3
71	3	71	4	71	3	71	4
72	4	72	1	72	3	72	2
73	2	73	1	73	2	73	4
74	1	74	2	74	1	74	1
75	3	75	4	75	3	75	1
76	2	76	3	76	3	76	1
77	2	77	2	77	2 & 1	77	3
78	2	78	4	78	1	78	4
79	1	79	3	79	1	79	2
80	2	80	1	80	1	80	1
81	3	81	4	81	2	81	1
82	2	82	4	82	1	82	3
83	1	83	2	83	3	83	4
84	2	84	3	84	3	84	3
85	2	85	1	85	1	85	3
86	2	86	3	86	3	86	3
87	1	87	2	87	NA	87	3
88	3	88	1	88	3	88	3
89	2	89	3	89	1	89	2
90	2	90	1	90	4	90	4
91	1	91	2	91	4	91	4
92	1	92	2	92	2	92	1
93	3	93	1	93	4	93	4
94	3	94	1	94	2	94	4
95	3	95	Y	95	3	95	2
96	4	96	2	96	2	96	2
97	4	97	1	97	2	97	1
98	3	98	2	98	4	98	NA
99	3	99	1	99	1	99	4
100	1	100	2	100	1	100	2
101	2	101	1	101	2	101	1
102	4	102	4	102	1	102	1
103	4	103	2	103	3	103	3
104	1	104	1	104	4	104	2
105	4	105	2	105	1	105	1
106	1	106	1	106	4	106	4
107	2	107	3	107	4	107	2

108	4	108	3	108	4	108	2
109	2	109	3	109	4	109	2
110	4	110	3	110	1	110	1
111	3	111	3	111	4	111	2
112	3	112	2	112	4	112	4
113	1	113	NA	113	1	113	3
114	3	114	3	114	4	114	3 & 2
115	4	115	1	115	2	115	4
116	2	116	4 & 1	116	3	116	2
117	3	117	4	117	2	117	2
118	3	118	4	118	2	118	3
119	4	119	3	119	1	119	4
120	1	120	1	120	3	120	4
121	3	121	2	121	3	121	2
122	2	122	4	122	1	122	2
123	2	123	2	123	4	123	4
124	4	124	3	124	4	124	4
125	3	125	1	125	4	125	4
126	3	126	4	126	3	126	2
127	3	127	4	127	3	127	4
128	4	128	3	128	4	128	1
129	2	129	4	129	4	129	2
130	4	130	2	130	4	130	4
131	1	131	2	131	2	131	1
132	1	132	4	132	4	132	3
133	4	133	2	133	4	133	4
134	2	134	2	134	3	134	1
135	1	135	1	135	3	135	3
136	4	136	2	136	3	136	1
137	1	137	NA	137	2	137	2
138	3	138	4 & 3	138	4	138	1
139	3	139	2	139	4	139	2
140	2	140	1	140	1	140	1
141	3	141	2	141	3	141	3
142	3	142	2	142	3	142	4
143	3	143	1	143	2	143	1
144	1	144	4	144	2	144	4
145	4	145	4	145	4	145	4
146	4	146	3	146	3	146	2
147	3	147	1	147	3	147	1
148	2	148	1	148	1	148	4
149	2	149	4	149	2	149	2

150	4	150	3	150	3	150	3
151	3	151	2	151	3	151	4
152	2	152	3	152	1	152	3
153	4	153	3	153	2	153	1
154	3	154	1	154	3	154	1
155	1	155	2	155	1	155	3
156	1	156	1	156	2	156	1
157	4	157	3	157	3	157	2
158	4	158	1	158	2	158	4
159	1 & 2	159	3	159	4	159	1
160	2	160	1	160	3	160	2
161	4	161	1	161	1	161	2
162	2	162	1	162	3	162	4
163	1	163	1	163	4	163	4
164	1	164	3	164	3	164	1
165	1	165	3	165	1	165	1
166	3	166	3	166	2	166	3
167	2	167	1	167	2	167	4
168	2	168	3	168	3	168	4
169	3	169	2	169	1	169	3
170	4	170	1	170	4	170	4
171	1	171	2	171	3	171	4
172	3	172	1	172	1	172	3
173	3	173	4	173	2	173	1
174	3	174	3	174	1	174	NA
175	NA	175	3	175	4	175	2
176	2	176	4	176	2	176	3 & 4
177	3	177	2	177	1	177	3
178	2	178	1	178	4	178	1
179	2	179	3	179	4	179	2
180	2	180	3	180	2	180	1

KEY AND SOLUTION FOR NEET 2017

SI.	Key	Solution	Chapter Name		<u> </u>		Difficulty Level		Remarks
140.			Onapior Hamo	Е	M	D			
1	3	$\begin{aligned} HgCl_2 + 4I^- &\to HgI_4^{2-} + 2CI^- \\ I_2 + I^- &\to I_3^- \end{aligned}$	Coordination Compounds		√				
2	4	Hydration of propyne gives propanone	Hydrocarbons	V					
3	4	Correction definition	Organic Chemistry- Some Basic Principles	V					

4	NA	No correct answer in the options given	Structure of Atom			√	
5	4	BCl ₃ → sp ² hybridisation → 3 bp + 0 lp → trigonal planar → Bond angle 120°	Chemical Bonding	V			
6	2	Microorganisms (bacteria) present in the soil act as a sink for CO	Environmental Chemistry		$\sqrt{}$		
7	3	CN ⁻ and CO contains same number of electrons. Isoelectronic species have the same bond order	Chemical bonding	V			
8	2	Product is α , β -unsaturated carbonyl compound	Aldehydes, Ketones and Carboxylic Acids		V		
9	2	Acidified KMnO ₄ oxidises SO ₂ to H_2SO_4 $2KMnO_4 + 5SO_2 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$	d & f-Block Elements	V			
10	4	For hydrogen atom, energy depends only on the value of 'n'	Structure of Atom	$\sqrt{}$			
11	1	Crystal field splitting energy among the ligands is of the order $H_2O < NH_3 < en$ $E\alpha\frac{1}{\lambda}$ Since energy is inversely proportional to wavelength, the correct increasing order of wavelength is $[Co(en)_3]^{3+}, [Co(NH_3)_6]^{3+}, [Co(H_2O)_6]^{3+}$	Coordination Compounds	**************************************	7	Š.	
12	3	The complexes are $[Co(NH_3)_6]Cl_3$, $[Co(NH_3)_5Cl]Cl_2$, $[Co(NH_3)_4Cl_2]Cl$ respectively. Hence the stochiometry of AgCl formed is $3:2:1$	Coordination Compounds	٧	3		
13	4	Picric acid is highly acidic	Alcohols, Phenols and Ethers	V			
14	4	Presence of electron donating group at para position of aniline increases its basic strength	Amines	√			
15	2	$\begin{array}{c} \text{O} \text{O} \\ \text{H}_2\text{S}_4\text{O}_6 \text{ is } \text{HO-S-S-OH} \\ \text{II} \text{II} \\ \text{O} \text{O} \\ \text{O} \text{O} \\ \text{H}_2\text{S}_2\text{O}_3 \text{ is } \text{HO-S-OH} \\ \text{II} \\ \text{O} \end{array}$	p-Block Elements	V			
16	2	Mixture of chloroxylenol and terpineol (dettol) acts as antiseptic	Chemistry in Everyday Life	√			
17	2	Correct order of acidity	Hydrocarbons	√			
18	3	OCH_3 OH $+ CH_3I$	Alcohols, Phenols and Ethers	V			
19	3	Since the process is adiabatic, $q = 0$ $\therefore \Delta U = W = -P_{ext}\Delta V$	Thermodynami cs		$\sqrt{}$		

		= -2.5 (4.5 - 2.5) = -5 L atm					
		= -2.5 (4.3 - 2.5) = -3 L atm = $-5 \times 101.3 \text{ J}$					
		≃ –505 J					
20	4	o-Nitrophenol is steam volatile	Alcohols, Phenols and Ethers	V			
21	4	Bond angles and bond lengths remain the same in different conformation	Hydrocarbons	V			
22	1	$\begin{split} &SrCO_{3(s)} \longrightarrow SrO_{(s)} + CO_{2(g)} \\ &K_p = p_{CO_2} = 1.6 \text{ atm} \\ &\text{Hence the maximum pressure attained is 1.6 atm} \\ &P_1V_1 = P_2V_2 \\ &0.4 \times 20 = 1.6 \times V_2 \\ &V_2 = \frac{8}{1.6} = 5L \end{split}$	Equilibrium		٧		
23	2	$t_{1/2} = \frac{0.693}{10^{-2}} = 69.3 \text{ sec}$ $20 \xrightarrow{69.3} 10 \xrightarrow{69.3} 5$ $\therefore \text{Total time} = 138.6 \text{ sec}$	Chemical Kinetics	V			
24	2	Since $\Delta H = +ve$ and $\Delta S = +ve$, the reaction is spontaneous when $T\Delta S > \Delta H$ i.e., when the temperature is above equilibrium temperature $T_{eqbm} = \frac{\Delta H}{\Delta S} = \frac{35.5 \times 10^3}{83.6} = 425 \text{K}$	Thermodynami cs		V		
25	3	$\begin{split} Zn_{(s)} + Cu_{(aq)}^{2+} &\longrightarrow Cu_{(s)} + Zn_{(aq)}^{2+} \\ E_1 &= E_{cell}^{\circ} - \frac{0.06}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]} \\ &= E_{cell}^{\circ} - 0.03 \log \frac{10^{-2}}{1} \\ &= E_{cell}^{\circ} + 0.06 \\ E_2 &= E_{cell}^{\circ} - 0.03 \log \frac{1}{10^{-2}} \\ &= E_{cell}^{\circ} - 0.06 \\ &\therefore E_1 > E_2 \end{split}$	Electrochemist ry	S P	1	ig.	
26	2	Grignard reagent is R-MgX	Coordination Compounds	√			
27	2	$2NH_{3} \longrightarrow N_{2} + 3H_{2} \qquad \frac{1}{K_{1}} - (1)$ $N_{2} + O_{2} \longrightarrow 2NO \qquad K_{2} - (2)$ $3H_{2} + \frac{3}{2}O_{2} \rightarrow 3H_{2}O \qquad K_{3}^{3} - (3)$ $(1) + (2) + (3) \Rightarrow$ $2NH_{3} + \frac{5}{2}O_{2} \longrightarrow 2NO + 3H_{2}O$ $\frac{1}{K_{1}} \times K_{2} \times K_{3}^{3}$	Equilibrium	√			
28	2	The element, $Z = 114$ is Flerovium (F ℓ). It belongs to carbon family E.C - [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ²	Classification of Elements		V		
29	3	In [Mn(CN) ₆] ³⁻ the central atom	Coordination Compounds		$\sqrt{}$		

		manganese undergoes d ² sp ³					
		manganese undergoes d ² sp ³ hybridisation and the structure is octahedral					
30	1	It is aromatic nucleophilic substitution involving benzyne intermediate	Haloalkanes and Haloarenes			V	
31	1	Sn ²⁺ is reducing and Pb ⁴⁺ is oxidising due to inert pair effect	p-Block Elements	√			
32	4	In denaturation, proteins lose the biological activity	Biomolecules		√		
33	1 & 4	FeO _{0.98} has non stoichiometric metal excess defect. Frenkel defect is shown by ionic substance in which there is large difference between the size of the cations and anions	Solid State	V			
34	1	The correct IUPAC name is 2-methyl-3-oxohex-4-enal	Aldehydes, Ketones and Carboxylic Acids		V		
35	3	The greater range of oxidation states among the actinoids is due to the fact that 5f, 6d and 7s levels are having comparable energies	d & f-Block Elements	V			
36	4	$2[Ag(CN)_{2}]_{(aq)}^{-} + Zn_{(s)} \longrightarrow $ $[Zn(CN)_{4}]_{(aq)}^{2-} + 2Ag_{(s)}$	Metallurgy		V		
37	4	Because of high hydration enthalpy of Li ⁺ , ionic mobility is the least	s-Block Elements		V		
38	2	Molarity is temperature dependant since its depends on volume	Some Basic Concepts of Chemistry	V		.λ.	
39	4	The value of molal depression constant (K_f) depends only on the nature of the solvent	Solutions	1	6		
40	4	Rate = $k[x][y_2]$ = $k'[x_2]^{1/2}[y_2]$ Order = 1.5	Chemical Kinetics	10.	V		
41	4	$Ag_{2}C_{2}O_{4} = 2Ag^{+} + C_{2}O_{4}^{2-}$ $2s = 2.2 \times 10^{-4}$ $\therefore s = 1.1 \times 10^{-4}$ $K_{sp} = 4s^{3}$ $= 4 \times (1.1 \times 10^{-4})^{3}$ $= 5.3 \times 10^{-12}$	Equilibrium		√		
42	2	XX' – Linear XX' ₃ – T-shape XX' ₅ – Square pyramidal XX' ₇ – Pentagonal bipyramidal	p-Block Elements	V			
43	2	A catalyst does not change the equilibrium constant of a reaction	Chemical Kinetics	V			

	l	Г	<u> </u>				
44	3	$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{Cu}} \text{CH}_3\text{CHO} \xrightarrow{\text{OH}^-} \\ \text{(X)} & 573\text{K} & \text{(A)} & \Delta \\ \\ \text{CH}_3 - \text{CH} = \text{CH} - \text{CHO} \\ \text{Y} & \\ \\ \xrightarrow{\text{H}_2\text{N-NH}-\text{C-NH}_2} & \\ \\ & \text{O} \\ \\ & \text{H}_2 & \text{OH} - \text{CHO} \\ \\ & \text{OH} \\ \\ \end{array}$	Aldehydes, Ketones and Carboxylic Acids		\checkmark		
		CH_3 - CH = CH - CH = N - NH - C - NH_2					
45	2	Hoffmann bromamide reaction	Amines	$\sqrt{}$			
46	3	Primary treatment is physical removal of particle.	Microbes in human welfare	√			
47	1	Conservation out of the natural habitat.	Biodiversity and conservation	√			
48	2	PEP is the priamry CO ₂ acceptor in C ₄ plants.	Photosynthesis in higher plants		√		
49	3	Aerosols have negative impact on the environment.	Environmental issues			√	
50	3	Choanocytes are otherwise known as collar cells.	Animal kingdom	√			
51	2	Paneth cells secrete lysozyme.	Digestion and absorption			√	
52	1	Volume of air remaining in the lungs even after the most forcible expiration is residual volume.	Breathing and exchange of gases		V		
53	4	Viroids are free RNA with low molecualr weight.	Biological classification		V		
54	4	Lipids have molecualr weight less than 1000 Da.	Biomolecules	4.0	√		
55	1	Pinus is monoecious	Plant kingdom		√	Α.	
56	1	Selectable marker help to distinguish transformants from non-transformants.	Biotechnology principles and processes	0	V	700	
57	2	ANF act as a check on RAAS.	Excretory products and their elimination	10,4	V		
58	3	In Bougainvillea thorns are stem modifications.	Morphology of flowering plants	V			
59	3	Hemichordates and chordates have pharyngeal gill slits.	Animal kingdom		√		
60	3	Cellulose microfibrils are radially oriented.	Anatomy of flowering plants		√		
61	1	Ascending limb of loop of Henle is impermeable to water.	Excretory products and their elimination		V		
62	1	Archaebacteria have a highly resistant cell wall.	Biological classification		√		
63	3	White kernel of coconut is cellular endosperm.	Sexual reproduction in flowering plants		V		
64	3	Sapwood is involved in conduction.	Anatomy of flowering plants		√		
65	3	Codons are triplets.	Molecular basis of inheritance			√	
66	1	Human activity is not allowed in core zone.	Biodiversity and its conservation			V	
67	2	Dioecy prevents both autogamy and geitonogamy.	Sexual reproduction in flowering plants		√		

				1	1		
68	4	The cycle starts with condensation of acetyl group with OAA.	Respiration in plants		√		
69	3	Shark and Trygon are marine fishes.	Animal kingdom		√		
70	4	Hepatic portal mainly collect of blood from intestine.	Body fluids and circulation		√		
71	3	Haploid functional megaspore develops to embryo sac.	Sexual reproduction in flowering plants	V			
72	4	Mycorrhizae are the example of mutualism.	Organism and population	√			
73	2	Rejection of transplanted organs is due to cell mediatated immunity.	Human health and diseases		√		
74	1	Absence of nucleus and other cell organelles helps RBC to accommodate maximum haemoglobin.	Body fluids and circulation		V		
75	3	Alexander von Humbolt described species area relationship.	Biodiversity and its conservation	V			
76	2	Entomophily is insect pollination	Sexual reproduction in flowering plants		V		
77	2	Holoenzyme is formed by combination of apoenzyme and Coenzyme.	Biomolecules		√		
78	2	Volvox is a colonial alge	Principles of inheritance		√		
79	1	Down's syndrome is due to non- disjunction of 21 st autosome.	Heredity and variation		√		
80	2	DNA fragments are negatively charged.	Principles and process biotechnology	√			
81	3	Pivot joint is a freely movable synovial joint.	Locomotion and Movement	Å	1	Ŕŷ.	
82	2	Asymptote is obtained when K=N	Organism and population		è	V	
83	1	Myelin sheath is produced by schwann cells and oligo dendrocytes.	Neural control	10,1		√	
84	2	Before marketing, expressed proteins are separated and purified by downstream processing.	Principles and process biotechnology	V			
85	2	GnRH stimulate anterior pituitary to secrete FSH and LH.	Chemical co- ordination		$\sqrt{}$		
86	2	In adults epiphyseal plates close after adolescence not permitting elongation.	Chemical co- ordination		√		
87	1	Forest ecosystem has maximum biomass.	Ecosystem	√			
88	3	Auxins prevent fall of fruit and leaf at early stage.	Plant growth and development		√		
89	2	Hershey and Chase gave the final proof of DNA as genetic material.	Molecular basis of inheritance		√		
90	2	Perissodactyla involves odd toed ungulates.	Living world			√	Out of syllabus
91	1	X = 12 and Y = 7	Breathing and exchange of gas			V	
92	1	All are correctly matched in option 1.	Human health and diseases		√		
93	3	Sickle cell anaemia is qualitative and thalassemia is quantintative.	Principles of inheritance			V	
94	3	Phellem made up of dead cells.	Anatomy of flowering plants			V	

		Pre-molars absent in milk teeth,	Discotion and				
95	3	2102	Digestion and absorption of		V		
93	3	$\frac{2102}{2102}$ is the dental formula.	gases		٧		
		Mitochondria is responsible for	-				
96	4	extracting energy from	Cell: The unit				
	7	carbohydrates.	of life		· ·		
		Capacitation mix the sperms capable	Human			,	Out of
97	4	of fertilizing ova.	reproduction			$\sqrt{}$	syllabus
		Association of Histone 1 with					
98	3	nucleosome indicates condensation	Molecular basis				
		of DNA into chromatin fibres.	of inheritance				
99	3	C ₄ plants respond to higher	Photosynthesis			$\sqrt{}$	
33	,	temperature optimum.	in higher plants			٧	
			Strategies for				
100	1	Purelines show stability in character	Enhancement in				
		inheritance.	Food		·		
			Production				
101	2	Mitosis never involve crossing over	Cell cycle and cell division		$\sqrt{}$		
			Structural				
102	4	Cloaca is the common opening for	organisation in			$\sqrt{}$	
'		digestive, excretory and genitial tract	animal			'	
400	A	Eukaryotes have split gene	Molecular basis		.1		
103	4	arrangement.	inheritance		√		
		1856-1863 is the period for mendel's	Principles of				
104	1	hybridisation experiments	inheritance and				
		nyonalon experiments	variation				
405		Ethidium bromide is used to stain the	Biotechnology		,		
105	4	DNA fragments	principles and				
		Copper ions suppress sperm motility	processes Reproductive				
106	1	and fertilising capacity of sperms	health	4.6			
4.5-		Vertical stratification can be best		D "	1		
107	2	seen in tropical rain forest.	Ecosystem	- 6	\checkmark	rÖ-	
108	4	Acetobacter aceti produces acetic	Microbes in	- √	. 1	7	
100	7	acid	human welfare	<u>سر ان ا</u>	SU.		
465		DNA fragments move according to	Biotechnology	78	-		
109	2	their size.	principles and	W.	$\sqrt{}$		
		Meiosis occur in the zygote producing	processes Reproduction	<u> </u>			
110	4	haploid organisms.	in organisms			$\sqrt{}$	
		Ectocarpus, is an alga showing	2.0		1		
111	3	haplo-diplontic life cycle.	Plant kingdom				
440	2	Mycoplasma was earlier known as	Biological	.1			
112	3	PPLO.	classification	$\sqrt{}$			
113	1	Root hairs develop from the region of	Morphology of		√		
113	'	maturation.	flowering plants		٧		
,,		In anemophilous plants, flowers are	Sexual		1		
114	3	packed into inflorescence .	reproduction in				
			flowering				
115	4	Receptor sites are present on post-	Neural control and co-		$\sqrt{}$		
113		synaptic membrane.	ordination		٧		
445		Pneumatophores are breathing roots	Morphology of		1		
116	2	seen in halophytes.	flowering plants		$\sqrt{}$		
447	2	DNA replication in bacteria occur	Biological			ا ـ	
117	3	prior to fission.	classification			√	
		4 genotype are, I ^A I ^A , I ^A i, I ^A I ^B and I ^B i	Principles of				
118	3	phenotypes are A, B and AB	inheritance and				
		•	variation				
119	4	Glycocalyx gives moist and sticky	Cell: The unit			$\sqrt{}$	
		appearance. rRNA constitute 70-80% of total cell	of life Molecular basis				
120	1	RNA.	of inheritance			$\sqrt{}$	
		TALVA.	oi iiiiiciitaiite				

		APC helps in breaking of centromere	Cell cycle and		l	l .	Out of
121	3	Al o helps in breaking or centromere	cell division				syllabus
			Principles of				Syllabas
122	2	Trichomes where not considered.	inheritance and		V		
122	_	Thenomes where not considered.	variation		٧		
			Mineral				
123	2	Rhodospirillum free living anaerobic	nutrition				
			Sexual				
124	4	It is the character of angiosperm.	reproduction in	V			
127	7	it is the character of anglosperm.	flowering plants	V			
		In person with low sperm count AI is	Reproductive				
125	3	advised.	health				
		Corpus luteum is the temporary	Human				
126	3						
		endocrine gland. Vascular cambium produces	reproduction				
127	3	•	Anatomy of		V		
121	٥	secondary xylem and secondary phloem.	flowering plants		\ \		
		Okazaki fragments help in elongation		1			
128	4		Molecular basis			V	
120	4	of lagging strand away from replication fork	of inheritance			V	
		Directional as it pushes the mean of		1			Out of
129	2	the character in one direction.	Evolution			$\sqrt{}$	syllabus
-		Rennin and Pepsin are the enzymes	Digestion and	 			Syliabus
130	4	present in gastric juice.	absorption				
			Morphology of			1	
131	1	Coconut fruit is drupe type.	flowering plants	$\sqrt{}$			
			Transport in	<u> </u>			
132	1	Water potential of pure water is zero.	plants	$\sqrt{}$			
			Structural				
133	4	Frog's heart is myogenic and auto	organisation in				
		excitable.	animals			'	
		B 0 11 011 1 0 0 1	Neural control	4.4			
134	2	Retinal is a light absorpting pigment	and co-		$\sqrt{}$		
	_	derived from vit. A.	ordination	4		. A.	
405		MALT constitutes about 50% of	Human health	4	- 15	. A.	
135	1	lymphoid tissue.	and disease	20	√ \	100	
		$P = \sigma A T^4$	10:00	0	A.		
		$P_1 = \sigma \pi (12 \times 10^{-2})^2 \times 500^4$	- VIII.	22			
		$P_2 = \sigma \pi (6 \times 10^{-2})^2 \times 1000^4$	102 20	30.			
136	4		H&T		\checkmark		
		$\frac{P_2}{P_1} = 2^2 = 4$	Mr. " 100.				
			150h				
		$P_2 = 4P_1 = 4 \times 450 = 1800$					
		$\frac{dQ}{dt} = \frac{K_1 A \Delta \theta}{\ell} + \frac{K_2 A \Delta \theta}{\ell} = \frac{K.2 A \Delta \theta}{\ell}$	100				
	l .				,		
137	1	$K_1 + K_2 = 2K$	H & T		$\sqrt{}$		
		$K = \frac{K_1 + K_2}{K_1 + K_2}$					
		$K = \frac{K_1 + K_2}{2}$					
		$RP \propto \frac{1}{\lambda}$					
400		λ	Ontice				
138	3	$RP_1 = \lambda_2 = 6 = 3 \cdot 2$	Optics	$\sqrt{}$			
		$\frac{RP_1}{RP_2} = \frac{\lambda_2}{\lambda_1} = \frac{6}{4} = 3 : 2$					
	<u> </u>	'	l	1		1	

139	3	$Q = \frac{d\phi}{R} = \frac{0 - \phi_2}{R} = \frac{\phi_2}{R}$ $\phi = BA$ $= (\mu_0 \times 2 \times 10^4 \times 4) \times \pi \times 100(10^{-2})^2$ $Q = \frac{\phi}{R} = \frac{\mu_0 \times 2 \times 10^4 \times 4 \times \pi \times 10^{-4} \times 100}{10 \times \pi^2}$ $= \frac{4\pi \times 10^{-7} \times 2 \times 10^4 \times 4\pi \times 10^{-4} \times 100}{10\pi^2}$ $= 32 \times 10^{-6} = 32 \mu\text{C}$	EMI		٧		
140	2	$KE = \frac{3}{2}kT$ $P = \sqrt{2mKE} = \sqrt{2m \times \frac{3}{2}kT}$ $\lambda = \frac{h}{\sqrt{3mkT}}$	Modern Physics		V		
141	3	$\tau = 30 \times 40 \times 10^{-2}$ $I\alpha = mR^{2}\alpha$ $= 3(40 \times 10^{-2}) \times \alpha$ $30 \times 40 \times 10^{-2} = 30(40 \times 10^{-2})^{2}\alpha$ $\alpha = \frac{30}{3 \times 40 \times 10^{-2}} = 25 \text{ rad s}^{-2}$	Rotational Dynamics		٧	3.	
142	3	$R_1 = \frac{\rho \ell}{A} = \frac{\rho \ell}{\frac{V}{\ell}} = \frac{\rho \ell^2}{V}$ $R_2 = \frac{\rho n^2 \ell^2}{V} = n^2 R_1 = n^2 R$	Current Electricity	11/2 12/2 13/2 13/2 13/2 13/2 13/2 13/2	V	, Car	
143	3	Last line of Balmer $\frac{1}{\lambda_B} = R \left(\frac{1}{2^2} - \frac{1}{\alpha^2} \right) = \frac{R}{4}$ Last line of LYman $\frac{1}{\lambda_L} = R \left(\frac{1}{1^2} - \frac{1}{\alpha^2} \right) = R$ $\frac{\lambda_B}{\lambda_L} = R \div \frac{R}{4} = 4$	Modern Physics		V		
144	1	$x \times 2\theta = y$ $\theta = \frac{y}{2x}$	Ray Optics	V			
145	4	$F_{1} = F_{2} = \frac{\mu_{0}II}{2\pi d}$ $F = \frac{\sqrt{2}\mu_{0}I^{2}}{2\pi d} = \frac{\mu_{0}I^{2}}{\sqrt{2}\pi d}$	Magnetic Effects		V		
146	4	$f' = f_0 \times \frac{v + v_L}{v - v_s}$	Waves		V		

		(0.40, 40.5)		1	1	I	
		$= 400 \frac{(340 + 16.5)}{(340 - 22)}$					
		(340 – 22) = 448 Hz					
147	3	A = 3 cm	Oscillations			V	
148	2	$ \eta = \frac{1}{10} = \frac{W}{Q_1} = \frac{10}{Q_1} $ $ Q_1 = 100 $ $ W = Q_1 - Q_2 $	Н&Т		V		
149	2	$\begin{aligned} &Q_2 \ Q_1 - W = 100 - 10 = 90 \ J \\ &A = \lambda' = 8\lambda; \ B = \lambda \\ &N_A = N_0 e^{-8\lambda t}; N_B - N_0 e^{-\lambda t} \\ &\frac{N_B}{N_A} = \frac{e^{-\lambda t}}{e^{-8\lambda t}} = \frac{1}{e} \\ &e^{7\lambda t} = \frac{1}{e} \Rightarrow t = -\frac{1}{7\lambda} \end{aligned}$	Modern Physics	•		١ ١	
150	4	$140\rho_0 gA = 130\rho_w gA$ $\rho_0 = \frac{130}{140}.\rho W$ $= \frac{130}{140} \times 1000 = 928 \text{ kg m}^{-3}$	Properties of Matter	37.6	V		
151	3	$= \frac{130}{140} \times 1000 = 928 \text{ kg m}^{-3}$ $t_1 \vee_P = S$ $t_2 \vee_e = S$ $t(\vee_P + \vee_e) = S$ $t\left(\frac{S}{t_1} + \frac{S}{t_2}\right) = S \Rightarrow$ $t = \frac{t_1 t_2}{(t_1 + t_2)}$	Motion in 1D		√		
152	2	$E_1 = \frac{1}{2C}$ $E_2 = \frac{Q^2}{4C}$ Decreases by factor 2	Electrostatics	V			
153	4	W – gravity mgh = $1 \times 10^{-3} \times 1 \times 10^{3} \times 10 = 10$ $\frac{1}{2}$ mv ² = $\frac{1}{2} \times 10^{-3} \times 2500 = 1.25$ W _{resistor} = $1.25 - 10$ = -8.75 J	Work Power Energy		V		
1	3	No current condition	Current				
154	3	Tto Garront Gorianion	Electricity	·			

156	1	Basic idea	Rotational		√		
136	1		Dynamics		ν		
157	4	$g_h = g\left(1 - \frac{2h}{R}\right)$ $g_d = g\left(1 - \frac{d}{R}\right)$ $2h = d$ $d = 2 \times 1 = 2 \text{ km}$	Gravitation		$\sqrt{}$		
158	4	$d = 2 \times 1 = 2 \text{ km}$ $2C_v.T + 4C_v'.T$ $= 2.\frac{5}{2}R.T + 4.\frac{3}{2}R.T$ $= 11RT$	Н&Т		V		
159	1 & 2	$KE = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$ $= \frac{1}{2}mv^2$ $v = \sqrt{\frac{2}{m}.hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}$ Substituting $v = 0.6 \times 10^6 \text{ m s}^{-1}$	Modern Physics		V		
160	2	$(\mu - 1)A = -(\mu' - 1)A'$ $(1.42 - 1)A = (1.7 - 1)A'$ $4.2 = 0.7A'$ $A' = \frac{4.2}{0.7} = 6^{\circ}$	Ray Optics	V			
161	4	$B = \frac{PV}{\Delta V}$ $\frac{\Delta V}{V} = \frac{P}{B} = \frac{3\Delta r}{r}$ $\therefore \frac{\Delta r}{r} = \frac{P}{3B}$	Properties of Matter	of of	1	ig.	
162	2	$(2n + 1) \frac{V}{4\ell} = 220$ $(2n + 3) \frac{V}{4\ell} = 260$ Solving n = 5 ∴ f ₀ = $\frac{V}{4\ell}$ = 20 Hz	Waves	10°	√		
163	1	Solving n = 5 $f_0 = \frac{V}{4\ell} = 20 \text{ Hz}$ $C = LT^{-1}$ $G = M^{-1}L^3T^{-2}$ $\frac{e^2}{4\pi\epsilon_0} = ML^3T^{-2}$ $\frac{1}{C^2} \left(G \cdot \frac{e^2}{4\pi\epsilon_0}\right)^{1/2} = L$			V		
164	1	Basic knowledge	Laws of Motion	√			
165	1	$\begin{split} W &= mB \cos\theta \\ W &= mB(1(-1)) = 2mB \\ &= 2niAB \\ &= 2 \times 250 \times 85 \times 10^{-6} \\ &\times (2.1 \times 1.25) \times 10^{-4} \times 0.85 \\ &= 9.4 \ \mu J \end{split}$	Magnetic Effects		V		
166	3	Using the ratio and $K \propto \frac{1}{\ell}$ $K_2 = \frac{K_1}{2} \qquad K_3 = \frac{K_1}{3}$	Work Power Energy			V	

	1			1			
		$K_{\text{eff}} = K_1 \left[1 + \frac{1}{2} + \frac{1}{3} \right] = \frac{11}{6} K_1$					
		But $K_1 = 6 K$					
		∴ K _{eff} = 11 K for parallel combination					
		K _{eff} = K in series combination ∴ the ratio is 1 : 11					
167	2	$W = q(V_A - V_B)$ will be same in all 4	Electrostatics	V			
168	2	cases Basic knowledge	Gravitation	√			
100		$v_x = 5 - 4t$	Gravitation	٧			
169	3	$v_y = 10$	Motion in 1D	√			
		$\therefore a_x = -4$ $a_y = 0$					
		$\frac{8\lambda D}{d\mu} = \frac{9}{2} \frac{\lambda D}{d}$					
170	4		Wave Optics		$\sqrt{}$		
		$\frac{16}{9} = 1.78$	'				
		$tan\theta_1 = \frac{B_V}{B_H \cos \phi}$					
		$\tan \theta_2 = \frac{B_v}{B_H \sin \phi}$					
		$\cos\phi = \frac{\tan\theta}{\tan\theta_1}$					
171	1		Magnetism			$\sqrt{}$	
		$\sin \phi = \frac{\tan \theta}{\tan \theta_2}$					
		$\therefore 1 = \frac{\tan^2 \theta}{\tan^2 \theta_1} + \frac{\tan^2 \theta}{\tan^2 \theta_2}$. 150				
		$\Rightarrow \cot^2\theta = \cot^2\theta_1 + \cot^2\theta_2$		2		4	
172	3	Basic knowledge	Electronics	- J		fO.	
172	3	$9 \times 10^9 \Delta E^2$	Electionics	2 0	Ju.		
173	3	= $6.67 \times 10^{-11} \times 1.67 \times 10^{-54}$ $\Delta E^2 = 2 \times 10^{-74}$	Electrostatics	4	-	V	
1/3	3	$\Delta E^2 = 2 \times 10^{-17}$	Electrostatics	3.		٧	
		$\Delta E = \sqrt{2} \times 10^{-37} \text{ C}$	W. M. Ca.				
		$A_v = \beta \frac{R_o}{R_i} = 100 \times \frac{3}{2}$	CO				
174	3	= 150	EMI & AC				
		$A_{v} = \beta \frac{R_{o}}{R_{i}} = 100 \times \frac{3}{2}$ $= 150$ $A_{P} = \beta \frac{R_{o}^{2}}{R_{i}} = 15000$					
		R _i					
		X _L will be greater immediately after switching ON.					
475	No	$X_C = 0$				ا	
175	Optio n	$I = \frac{18}{(0)} = 4 \text{ A}$	EMI & AC			V	
		$I = \frac{18}{\left(\frac{9}{2}\right)} = 4 \text{ A}$					
		B falls under g spring will have a					
470		restoring force of mg up ∴ 3ma = mg	Laura of Mation		.1		
176	2		Laws of Motion		$\sqrt{}$		
		$a_A = \frac{g}{3} , a_B = g$					
		Out of P ₃ $\frac{I_0}{2} \cos^2 45^\circ = \frac{I_0}{4}$					
177	3	- '	Wave Optics		$\sqrt{}$		
		Out of P ₂ $\frac{I_0}{4} \cos^2 45^\circ = \frac{I_0}{8}$	- 1 - 2				
		4 0					1

178	2	$\Delta E = \frac{1}{2} \frac{I_1 I_2}{I_1 + I_2} (\omega_1 - \omega_2)^2$ $= \frac{1}{2} \cdot \frac{I}{2} \cdot (\omega_1 - \omega_2)^2$ $= \frac{1}{4} I(\omega_1 - \omega_2)^2$	Rotational Dynamics		V	
179	2	$C = \frac{E_{rms}}{B_{rm}}$ $B_{rm} = \frac{6}{3 \times 10^{8}} = 2 \times 10^{-8}$ $\therefore B_{0} = B_{rm} \times \sqrt{2}$ $= 2 \times 10^{-8} \times \sqrt{2} = 2.83 \times 10^{-8} \text{ tesla}$	EM Waves		V	
180	2	Basic knowledge	H & T	√		

